Name: Period: Date:

Ions

How are ions made from neutral atoms?

Why?

You have learned that not all atoms of an element are the same. Variation in the number of neutrons results in different isotopes of the element. In this activity we will explore another variation that can take place—the loss and gain of electrons. The exchange of electrons between atoms is a very common way for chemical change to take place. We will see it many times throughout the year.

1. Use Model 1 to complete the following table (next page and look for the one that matches the charge).

	Metal or Nonmetal	protons the same		Is the number of electrons the same in the atom and the ion?	Charge on the ion
Lithium	metal				1+
Magnesium					2+
Aluminum		yes			3+
Fluorine				no	1-
Oxygen	nonmetal		yes	no	2–
Nitrogen					3–

- 2. Based on the table you completed in Question 1, what distinguishes a neutral atom from an ion?
- 3. Examine the isotope symbols in Model 1.
 - a. Where is the ion charge located in the isotope symbol?
 - b. Is a charge indicated on the neutral atoms? If yes, where is it located?
- 4. Which subatomic particle carries a positive charge?
- 5. Which subatomic particle carries a negative charge?

6. How do you determine the charge on an ion using protons and electrons? Provide a negative ion and positive ion example.

1 Ions

Model 1 – Atoms and Ions

	Nonte Atom	3		Nonte Atom	
	Atom of Lithium	Ion of Lithium		Atom of Fluorine	Ion of Fluorine
Symbol	, Li	$\frac{7}{3}$ Li ¹⁺	Symbol	1 ⁹ F	$^{19}_{9}$ F ¹⁻
Atomic Diagram	Electron cloud	Electron cloud Nucleus O O O O O O O O O O O O O O O O O O O	Atomic Diagram	Ekerron doud	- Electron cloud
No. of Protons	3	3	No. of Protons	6	6
No. of Neutrons	4	4	No. of Neutrons	10	10
No. of Electrons	3	2	No. of Electrons	6	10
	Atom of Magnesium	Ion of Magnesium		Atom of Oxygen	Ion of Oxygen
Symbol	$^{24}_{12}\mathrm{Mg}$	$^{24}_{12}{ m Mg}^{2+}$	Symbol	O_8^{91}	$^{16}_{8}O^{2-}$
Atomic Diagram	Electron doud	Electron cloud Nucleus	Atomic Diagram	Electron cloud	Electron cloud Nucleus
No. of Protons	12	12	No. of Protons	8	8
No. of Neutrons	12	12	No. of Neutrons	8	8
No. of Electrons	12	10	No. of Electrons	8	10
	Atom of Aluminum	Ion of Aluminum		Atom of Nitrogen	Ion of Nitrogen
Symbol	$^{27}_{13}$ AI	$^{27}_{13} m{Al}^{3+}$	Symbol	^{14}N	$^{14}_{7}$ N ³⁻
Atomic Diagram	Electron cloud	Electron cloud	Atomic Diagram	Electron cloud	Berron doud
No. of Protons •	13	13	No. of Protons •	7	7
No. of Neutrons	14	14	No. of Neutrons	7	7
No. of Electrons	13	10	No. of Electrons	7	10

Read This!

Chemists refer to positively charged ions as cations. Chemists refer to negatively charged ions as anions.

7. Fill in the following table (recall the top value is mass number and the bottom value is atomic number).

Symbol	⁸⁸ Sr ²⁺ 38	$\frac{^{32}S^{2-}}{^{16}}$		
Atomic Number				35
Mass Number			70	
Number of protons			31	
Number of electrons			28	36
Number of neutrons				45
Cation or anion				

- 8. Could a +3 ion of aluminum be made by adding three protons to an aluminum atom? Explain.
- 9. One of your classmates is having trouble understanding ions. He explains the formation of a cation like this:
 - "When you add an electron, you get a positive charge because adding is positive in math."
 - a. As a group, explain in a sentence why this student is incorrect.
 - b. Provide a better description of how math relates to electrons and ion formation.

3 Ions

Model 2 - Ion Charges for Selected Elements (you do not need to fill it in)

	I	II					III	IV	V	VI	VII	VIII
1	H ⁺											
2	Li ⁺								N ³⁻	O ²⁻	F ¹⁻	
3	Na⁺	Mg ²⁺	transition elements				Al ³⁺		P ³⁻	S ²⁻	Cl¹-	
4	K⁺	Ca ²⁺	Fe ²⁺ Fe ³⁺	Ni ²⁺ Ni ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺	Ga ³⁺				Br ¹⁻	
5	Rb⁺	Sr ²⁺			Ag ¹⁺			Sn ²⁺ Sn ⁴⁺			I ¹⁻	
6		Ba ²⁺				Hg ₂ ²⁺ Hg ²⁺		Pb ²⁺ Pb ⁴⁺				
	CATIONS										$\overline{}$	

- 10. Draw a stair-step line in Model 2 to separate the metals and nonmetals.
- 11. Consider the ions listed in Model 2.
 - a. In general, do nonmetals form anions or cations?
 - b. In general, do metals form anions or cations?
 - c. Which nonmetal appears to be an exception to these guidelines?

Extension Questions

- 12. Name the family of elements that make 1- anions as shown in Model 2.
- 13. Name the family of elements that make 2+ cations as shown in Model 2.
- 14. For the main group elements (excluding the transition elements), is it necessary to memorize the type of ion each element makes or could you predict the ion charge using a periodic table? Explain.

15. In Model 2 there are several elements whose atoms make more than one type of ion. Where in the periodic table are these elements usually found?

Ions 5